
Linear Algebra - Review and Application to ODEs

(version 1 of notes)

Linear algebra is the study of vector spaces and linear maps. These ideas go beyond just Rn and
matrices. Let’s revisit what they mean and see how they are relevant to the theory of ODEs.

Vectors

Vectors are, roughly, mathematical objects that can be added together and that can be scaled by
scalars. Scalars are just numbers; usually we take them to be real numbers but sometimes we allow
complex numbers. For addable and scalable things to be called vectors, they need to follow the
rules you would expect from addition and scaling, things like

~v1 + ~v2 = ~v2 + ~v1,

c(~v1 + ~v2) = c~v1 + c~v2,

and so on. Here vectors are indicated with an arrow like ~v, and scalars don’t have the arrow, like c.
(The arrows are not always there to tell you which are vectors and which are scalars. It’s usually
clear.) The vectors of a certain type (ones that can be added together) are collected into a set called
a vector space.

Definition. A linear combination of vectors is a sum of scalings of them. So a linear combination
of ~v1, ~v2, . . . , ~vn would be any vector of the form

c1~v1 + · · ·+ cn~vn

for some choice of scalars c1, . . . , cn.

Example. Three dimensional space, R3, is a vector space. The points of R3, i.e. the vectors, are
written with their three coordinates listed vertically. Like this: 1

2
4

 .

Below, we see that this vector is a linear combination of

 1
4
6

 and

 0
1
1

:

 1
2
4

 = 1

 1
4
6

+ (−2)

 0
1
1

 .
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Example. Functions are vectors! They can be added and scaled, like in

3 sin(x) + 2x2.

Here the function sin(x) is scaled by three, and added to the function x2 scaled by two. The result
is a new function, one whose value at x is 3 sin(x) + 2x2. One says that 3 sin(x) + 2x2 is a linear
combination of sin(x) and x2.

Remark. To be clear, the vectors here are whole functions, not just their values at a specific
choice of x. In other words when I say “the function x2 is a vector”, I’m really talking about a
function f which is defined by f(x) = x2. The vector would be f itself, and not any specific f(x).

Remark. (Optional to read this remark...) What would be the vector space in the case of functions
as vectors? The main requirement is that vectors from the same vector space need to be addable to
produce the same type of vectors. This means that all the functions that get collected together into
one “function space” ought to have the same domain. One can require various other things of the
functions. One could require them to be continuous on their domain, for example. One could require
them to be differentiable, or differentiable with continuous derivative, or twice differentiable with
continuous derivative, etc. Here is an example of a function space: C7([1,∞)). This symbol stands
for the vector space of functions defined on the domain x > 1 which are seven times differentiable
with continous seventh derivative. We will typically not need this level of detail in our treatment!

Linear Independence

Definition. A list of vectors is linearly independent if the only linear combination of them that
yields zero is the one in which all scalars are chosen to be zero. So the list ~v1, ~v2, . . . , ~vn is linearly
independent if the following happens: The only way to have c1~v1 + · · · + cn~vn = ~0 is to choose
c1 = c2 = · · · = cn = 0. A list of vectors is linearly dependent if it is not linearly independent.

Example. The vectors

 1
2
3

 and

 1
2
4

 are linearly independent. Here’s why: if one had

c1

 1
2
3

+ c2

 1
2
4

 =

 0
0
0

 ,
then one would have 3c1+4c2 = 0 and 2c1+2c2 = 0. It is not hard to conclude from these equations
that c1 and c2 would both have to be zero.

Example. The functions sin and cos are linearly independent. To see this, suppose you had
scalars c1 and c2 such that

c1 sin(x) + c2 cos(x) = 0
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and try to show that c1 and c2 must be zero. Remember that this equation holds for all x, since
the vectors being manipulated are whole functions, and the zero on the right hand side is really
the zero function. So by choosing specific x values we get specific instances of the above equation.
Choosing x = 0 gives the equation c10 + c21 = 0, so c2 = 0. Choosing x = π/2 gives the equation
c11 + c20 = 0, so c1 = 0.

Remark. (Optional to read this remark...) You might remember that the dimension of a vector
space is defined to be the length of the longest possible linearly independent list of vectors. For
example, R3 has dimension 3, because one cannot list any more than three vectors from R3 while
still having the list be linearly independent, and there is a linearly independent list of three vectors: 1

0
0

 ,
 0

1
0

 ,
 0

0
1

. What about function spaces? What is the dimension of a typical function

space? Well, it turns out that there are linearly independent lists of functions that get arbitrarily
long, and infinite even. The list of functions 1, x, x2, x3, . . . is an example of an infinite linearly
independent list. So functions spaces tend to be infinite dimensional.

Linear Maps

Definition. A linear map is a vector-valued function of a vector variable that is linear. “Linear”
means that the function distributes over addition and scaling of vectors. So a linear map is a
function L(~v) of the vector variable ~v with vector output L(~v) with the property

L(c1~v1 + c2~v2) = c1L(~v1) + c2L(~v2).

This above property is what is known as “linearity.”

Remark. “Map” is just another word for “function.”

Example. Linear maps with domain R3 and outputs in R2 are represented by 2× 3 matrices, like

L(

 a
b
c

) =

[
1 2 3
4 5 6

] a
b
c

 =

[
a+ 2b+ 3c

4a+ 5b+ 6c

]
.

Example. The derivative operator L = d
dx

is a linear map that operates on functions. It is linear
because, as we know, derivatives distribute over sums and scaling:

L(c1f(x) + c2g(x)) = (c1f(x) + c2g(x))′ = c1f
′(x) + c2g

′(x) = c1L(f(x)) + c2L(g(x)).

Actually the same goes for the double derivative operator L = d2

dx2 and in fact any number of
derivatives L = dn

dxn .
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Remark. Again, when we treat functions as vectors, the vector is the whole function. So in the
above example, L(f(x)) can be more accurately written as L(f), because the whole function f is
being fed into the linear map L. This means L is a function that eats functions!

Example. Here is another random example of a linear map that operates on functions:

L(f(x)) = 5xf ′′(x)− x2f ′(x) + 2f(x).

Another way to describe what L does is

L = 5x
d2

dx2
− x2 d

dx
+ 2.

Convince yourself that this L really is a linear map.

Linear Systems

One of the main things you did in linear algebra was to solve linear systems. This is basically an
attempt to “undo” the action of a linear map. The old definition of linear system that you may
have been given before is an equation of the form “A~x = ~b,” where A is a specific matrix, ~b is a
specific vector and ~x is an unknown vector for which you are trying to solve. Let us upgrade to our
more sophisticated viewpoint in terms of linear maps:

Definition. A linear system is an equation of the form L(~x) = ~b, where L is a specific linear map,
~b is a specific vector, and ~x stands for an unknown vector for which one wants to solve.

Now for some terminology that should sound familiar from ODEs:

Definition. A particular solution to a linear system L(~x) = ~b is a specific choice of ~x that makes it
true. The parameterized family of all possible ~x ’s that are particular solutions is called the general
solution to the linear system.

Example. Let A be the matrix

A =

[
1 −1 2
−2 2 −4

]
.

Let L be the linear map given by L(~x) = A~x. Let ~b be the vector

~b =

[
1
2

]
.
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Then L(~x) = ~b is an example of a linear system. One particular solution is

~x =

 8
1
−3

 .
The general solution is the two-parameter family

~x =

 1 + c1 − 2c2
c1
c2

 .
Recall that this is something you could calculate algorithmically, for example by computing a
reduced row echelon form.

Example. Let L be the linear map “ d
dx

+ 2x.” In other words define L to be the linear map that
operates on functions in the following way:

L(f(x)) = f ′(x) + 2xf(x).

Let g(x) be the function e−x
2
. Then L(f(x)) = g(x) is an example of a linear system. Here f(x) is

in place of the notation ~x and g(x) is in place of the notation ~b. The linear system we have written
is actually an ODE:

f ′(x) + 2xf(x) = e−x
2

... a linear ODE! We know how to get the general solution by the method of integrating factors. It
is the one parameter family

f(x) = e−x
2

(x+ c).

General Solution via Homogeneous Linear System

Definition. A homogeneous linear system is a linear system of the form L(~x) = ~0. That is, it is

a linear system whose right hand side “~b ” is zero.

Suppose you are interested in finding the general solution, i.e. all solutions, of the linear system
L(~x) = ~b. Here ~x,~b could be Rn-type variables, with L being represented by a matrix. Or ~x,~b could
be function-type variable with L being some mish-mash of derivative operations. Either way, there
is a way to write down the general solution of L(~x) = ~b if you know the general solution of L(~x) = ~0

and just one particular solution of L(~x) = ~b. Here’s how it goes:

1. Find the general solution of the homogeneous version of the linear system: L(~x) = ~0. Say it
turns out to be the n-paramater family

~xc = c1~x1 + · · ·+ cn~xn.

2. Somehow find at least one particular solution to the original nonhomogeneous linear system;
call it ~xp.
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3. Now every solution to the original nonhomogeneous linear system is the sum of ~xp and a
solution to the homogeneous linear system. So the general solution to the nonhomogeneous
linear system is the n-parameter family

~x = c1~x1 + · · ·+ cn~xn + ~xp.

To understand why this works, we should try to verify the statement in red. First, consider a sum
~xp + ~xc where ~xp is a solution to L(~x) = ~b and ~xc is a solution to L(~x) = ~0. We have

L(~xp + ~xc) = L(~xp) + L(~xc) = ~b+~0 = ~b,

so ~xp + ~xc is indeed a solution to L(~x) = ~b. Note the use of linearity there. Now suppose you

gave me any solution ~x1 to L(~x) = ~b. Then ~x1 − ~xp is a solution to the homogeneous linear system
L(~x) = ~0:

L(~x1 − ~xp) = L(~x1)− L(~xp) = ~b−~b = ~0.

Thus ~x1 really is a sum of ~xp and a solution to the homogeneous one, namely

~x1 = ~xp + (~x1 − ~xp).

Example. Recall the linear system[
1 −1 2
−2 2 −4

]
~x =

[
1
2

]
from above. The general solution to the homogeneous version[

1 −1 2
−2 2 −4

]
~x =

[
0
0

]
is the two-parameter family (plane through the origin)

~xc = c1

 1
1
0

+ c2

 −2
0
1

 .

Since we already had a particular solution

 8
1
−3

 to the original nonhomogeneous linear system,

we can deduce that the general solution to the nonhomogeneous linear system is the two-parameter
family (shifted plane)

~x = c1

 1
1
0

+ c2

 −2
0
1

+

 8
1
−3

 .
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Example. Recall the linear system (ODE)

f ′(x) + 2xf(x) = e−x
2

from above. The homogeneous version

f ′(x) + 2xf(x) = 0

is separable, and we find that its general solution is the one-parameter family

f(x) = ce−x
2

.

One particular solution to the original nonhomogeneous ODE turns out to be xe−x
2
. We can deduce

that the general solution to the original nonhomogeneous linear system is the one-parameter family

f(x) = ce−x
2

+ xe−x
2

.

Remark. In these two examples, we already had the general solution to the nonhomogeneous
linear system; they were given in previous examples above. So we didn’t need to worry about
separately solving the homogeneous linear system. But I’ve done it anyway to demonstrate the
principle on something simple. The idea is that we will encounter certain nonhomogeneous linear
ODES for which the homogeneous version readily gives us a general solution, and for which we
will struggle to pry even one solution out of the fully nonhomogeneous version. Then the principle
stated here will allow us to write down a general solution to the nonhomogeneous linear ODE.
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